几十年来,核磁共振(nuclear magnetic resonance,NMR) 波谱一直是研究复杂生物化合物原子结构的关键技术之一。最流行的技术,固态核磁共振,包括将待分析的材料放入微小的圆柱形转子中,然后旋转到高频。然而,固态 ...
几十年来,核磁共振(nuclear magnetic resonance,NMR) 波谱一直是研究复杂生物化合物原子结构的关键技术之一。最流行的技术,固态核磁共振,包括将待分析的材料放入微小的圆柱形转子中,然后旋转到高频。然而,固态核磁共振的最大限制是转子在破碎前旋转的速度,这取决于转子材料的强度。 现在,来自MIT比特与原子中心和MIT化学系的研究人员找到了一种用单晶制造转子的方法。这些转子比已经使用的转子更小、更坚固。该研究的作者说,它们还可以以高得多的频率旋转,从而提高分辨率,缩短样本采集时间。他们的研究发表在《磁共振杂志》2023年7月号上(https://www.sciencedirect.com/science/article/abs/pii/S1090780723001106?via=ihub)。 固态核磁共振使用的技术之一是魔角旋转,它提供了改进的分辨率和灵敏度。在这种技术中,在圆柱体中填充被分析的材料后,将其悬浮在磁场中,并在受到射频脉冲时使用(通常是)氮气射流进行旋转。圆柱体相对于所施加的磁场以54.74度的“神奇”角度旋转,在这个角度最容易获得最清晰的原子结构测量结果。 在过去的几十年里,魔角旋转核磁共振的转子一直由高性能陶瓷材料钇稳定的氧化锆(YSZ)制成。这些转子直径小至0.7毫米,约为铅笔芯大小,中间有一个孔用于试样,其最大转速约为111千赫,即每分钟700万转。在这些速度下,YSZ转子往往会在大约一半的时间内发生故障,特别是它们会与样品和NMR线圈一起爆炸。该论文的作者之一Zachary Fredin说:“固态核磁共振已经存在很长一段时间了,这样会丢失一个样本,会破坏核磁共振线圈。” 一段时间以来,用单晶金刚石制造转子一直被视作一个有趣的选择,因为金刚石不仅非常坚韧,而且对太赫兹辐射的渗透性也高得多,并且具有良好的导热性。挑战一直是如何在金刚石晶体中钻出高纵横比的孔。2019年,当时在比特与原子中心的学生Prashant Patil发现了一种使用激光微机械加工钻这种孔的方法。Fredin说,这是一个相当出乎意料的结果,它为制作用于魔角旋转核磁共振的金刚石转子铺平了道路。 |
2025-02-28
2025-02-28
2025-02-27
2025-02-05
2025-01-03
请发表评论